Monatshefte für Chemie 105, 1082-1098 (1974) © by Springer-Verlag 1974

Ternäre Komplexboride mit ThMoB₄-Typ

Von

P. Rogl und H. Nowotny

Aus dem Institut für Physikalische Chemie der Universität Wien, Österreich

Mit 2 Abbildungen

(Eingegangen am 22. Mai 1974)

Ternary Complex Borides with ThMoB₄-Type Structure

Ternary complex borides of formula $MM'B_4$ * have been prepared within the systems Th—{V, Mo, W, Re}—B. The crystal structure of these compounds has been determined by means of single crystal photographs of the compounds ThMoB₄ and ThWB₄. ThVB₄, ThMoB₄, ThWB₄, ThReB₄ were found to be isotypic. The relationship to the crystal chemistry of boron layer structures such as AlB₂, YCrB₄, and Y₂ReB₆ will be discussed.

Von Pitman et al.¹ wurden vor einiger Zeit isotype Verbindungen in den Systemen Th—{Mo, W, Re}—B bei einer Zusammensetzung Th MB_4 beobachtet. Diese Autoren haben aus Einkristallaufnahmen von Th WB_4 eine primitive monokline Elementarzelle mit a = 12,25 Å, b = 3,75 Å, c = 6,14 Å, $\beta = 104,1^{\circ}$ und den möglichen Raumgruppen: Pm, P 2, P 2/m hergeleitet. Eine Bestimmung der Kristallstruktur wurde dabei in Aussicht gestellt, ist aber offensichtlich nicht durchgeführt worden.

Im Rahmen von Arbeiten über ternäre Komplexboride von Übergangsmetallen erschien obige Verbindungsklasse von besonderem Interesse, weshalb die Kristallstruktur von ThWB₄ bestimmt werden sollte. Außerdem galt diese Untersuchung, die Verbreitung dieses Strukturtyps in den Nachbarsystemen Th—{V, Nb, Cr}—B und seine Verwandtschaft zu den bisher bekannten Strukturtypen der Zusammensetzung MB_2 bzw. $(M, M')B_2$ festzustellen.

^{*} M,M': transition metals, Übergangsmetalle.

Probenherstellung

Pulvermischungen der Ausgangsstoffe* wurden im Gesamtgewicht von etwa 0,5 g in Edelstahlmatrizen kalt verpreßt und anschließend im Lichtbogen unter Zirkonium-gegettertem Argon geschmolzen. Zur besseren Homogenisierung wurden die erhaltenen Reguli nochmals umgeschmolzen. Darüber hinaus wurden auch kalt verpreßte Pillen im Vak. (10^{-6} Torr) auf einer Mo- bzw. W-Blechunterlage gesintert (1 Stde., 1750 °C).

Nach beiden Methoden ließen sich gut kristallisierte Boridproben herstellen. Es sei jedoch darauf hingewiesen, daß die Bildung von geringen Anteilen ThO₂ fast nicht verhindert werden kann, insbesondere bei der Vakuumsinterung. In den untersuchten Kombinationen Th--{V, Nb, Cr, Mo, W, Re}--B konnten ternäre Komplexboride der ungefähren Zusammensetzung ThMB₄ (M = V, Mo, W, Re) gefaßt werden. Dagegen gelang es nicht, in den Systemen mit Nb einerseits und Cr andrerseits analoge Komplexboride aufzufinden. Die Pulveraufnahmen von ThVB₄, ThMoB₄, ThWB₄ und ThReB₄ sind einander sehr ähnlich und deuten unmittelbar auf Isotypie hin; insbesondere ist auch die Verwandtschaft mit dem Pulverdiagramm des AlB₂-Typs augenfällig.

Das Pulverdiagramm von Th WB_4 entspricht zweifellos jenem, das von *Pitman* et al.¹ ausgewertet wurde. Die Bestimmung der Kristallstruktur obiger Phasen wurde mit Hilfe von Einkristallaufnahmen von Th MoB_4 und Th WB_4 durchgeführt.

Die Kristallstruktur von ThMoB₄

Aus einer Schmelzprobe mit dem Ansatz Th(20)Mo(10)B(70 At%) konnte ein längliches, blättchenförmiges Kristallfragment isoliert werden, dem die ungefähre Zusammensetzung ThMoB₄ zukommt. Drehkristallund Weissenbergaufnahmen um seine lange Achse lassen sich mit einer basiszentrierten, orthorhombischen Elementarzelle ($a = 7,48_1$ Å, $b = 9,65_8$ Å, $c = 3,77_1$ Å) indizieren. Im Hinblick auf die Daten von Pitman et al.¹ für ThWB₄ sei erwähnt, daß man auch eine einfachprimitive, monokline Zelle mit $a = 6,10_8$ Å, $b = 3,77_1$ Å, $c = 6,10_8$ Å und $\beta = 104,4^{\circ}$ zugrunde legen könnte. Das heißt, daß die *a*-Achse gegenüber jener von ThWB₄ (nach Pitman et al.) halbiert ist.

Die beobachteten Auslöschungen führen für die orthorhombische Zelle (hkl nur vorhanden für h + k = 2 n) auf die möglichen Raumgruppen: Cmmm, Cmm2 und C 222. Für die monokline Zelle kämen die Raumgruppen P 2, P m und P 2/m in Frage. Wegen der Kleinheit der Objekte wurde anstatt einer Dichtebestimmung die Raum-

^{*} Reinheitsgrad der verwendeten Ausgangsstoffe: Th: Pulver, Koch Light Lbs. Ltd.; Colnbrook, England, 99,9% Th; V: stückig, Koch Light Lbs. Ltd., 99,8% V; Mo: Pulver, Metallwerk Plansee, Reutte (Öster.) 99,94% Mo; W: Pulver, Metallwerk Plansee, 99,97% W; Cr: Elektrolytchrom in Pulverform, Schmelztechnik München, 99,5% Cr; Re: Ögussa Wien, "puriss.", B: kristallisiert: Koch Light Lbs. Ltd., 99% B.

erfüllung herangezogen. Mit etwa 75% ergeben sich für die orthorhombische Zelle 4 Formeleinheiten ThMoB₄ je Zelle.

Da die Intensitäten der Reflexe in der 0., 1. und 2. Schichtlinie weitgehend einander entsprechen, wird eine Anordnung der Metallatome in Schichten mit Abstand c nahegelegt.

Die Maxima einer Pattersonsynthese P(u, v) lassen sich in der höchstsymmetrischen Raumgruppe Cmmm zwanglos mit 4 Th in 4 i) 0y0, y = 0.302 und 4 Mo in 4 g) x00, x = 0.171 deuten. Eine Fouriersynthese bestätigt diese Punktlagen und damit die geordnete Verteilung der Metallatome (Th bzw. Mo). Dabei ergab sich kein Hinweis auf eine Abweichung des z-Parameters von z = 0. Für die 16 Boratome kommen in der Raumgruppe Cmmm aus räumlichen

 Tabelle 1. Atomparameter, Fehler und Temperaturkoeffizient (isotrop)
 für ThMoB4; Raumgruppe Cmmm

$4 \mathrm{Th}$	in	4i)	0y0	$y = 0,3021 \pm 0,0004$	$\mathbf{B}=0.4~\mathrm{\AA^2}$
4 Mo	in	4g)	x00	$x = 0,1708 \pm 0,0010$	$\mathbf{B}=0,9\mathrm{\AA^2}$
8 B	\mathbf{in}	8q)	$xy \frac{1}{2}$	x = 0,234	B - 91 Å2
				y = 0,155	D - 2,1 A-
4 B	in	4h)	$x_{0} \frac{1}{2}$	x = 0.379	$B = 2,3 Å^2$
4 B	\mathbf{in}	4j)	$0y_{1/2}^{1/2}$	y = 0,093	$\mathrm{B}=2,2\mathrm{\AA^2}$

Gründen nur die Lagen 8 q), 4 h) und 4 j) in Frage. Infolge des geringen Streuvermögens der Boratome im Vergleich zu den schweren Metallatomen ist die Lage der Boratome in der Differenzsynthese: $F_{\text{beob.}}$ — $F_{\text{ber. Metall}}$ nicht auflösbar. Die genaue Berechnung der Borlagen wurde daher aus einer Abstandsbetrachtung vorgenommen, wobei das Boratom jeweils im Zentrum des charakteristischen Strukturelementes, eines trigonalen Metallprismas [M_6B], liegt. Für die weitere Berechnung wurde die höchstsymmetrische Raumgruppe Cmmm beibehalten, da ein gewelltes Bornetz hier weniger wahrscheinlich ist. Die Verfeinerung der Kristallstruktur wurde im Least-Squeares-Programm mit isotropen Temperaturfaktoren durchgeführt und ergibt schließlich einen R-Wert von 12%.

Tab. 1 zeigt eine Zusammenstellung der Atomparameter, Fehler sowie Temperaturkoeffizienten für ThMoB₄.

Die Verfeinerung des Datensatzes wurde auch in der Raumgruppe P 2 durchgeführt; sie ergab praktisch dieselben Atomparameter (R-Wert: 12%) und bestätigt somit die orthorhombische Symmetrie.

Tab. 2 gibt berechnete und beobachtete Strukturamplituden wieder, Tab. 3 die interatomaren Abstände. Dabei stellen die Th---Th-Abstände sowie auch die Th---Mo-, Th---B- und Mo---B-Abstände prak-

1084

(1.1.1)	ThM	ThW	ThWB ₄	
(<i>nki</i>)	F _{beob} .	F _{ber.}	F _{beob} ,	Fber.
(020)	124	108	58	16
(040)	198	192	288	302
(060)	239	213	304	306
(080)	169	103	28	26
(0100)	270	254	302	328
(0120)	68	58		
(110)	66	31	80	26
(130)	280	306	295	364
(150)	221	228	225	185
(170)	248	217	284	259
(190)	15	4	63	25
(1110)	66	49	29	22
(220)	280	307	295	372
(240)	12	11	73	42
(260)	$\frac{1}{46}$	$\frac{1}{28}$	47	24
(280)	243	$2\overline{24}$	289	277
(2100)	179	155	154	125
(310)	223	212	312	318
(330)	135	124	56	23
(350)	308	351	376	445
(370)	103	82	19	5
(390)	155	97	204	172
(3110)	139	125	172	186
(420)	246	262	309	299
(440)	0	9	47	23
(460)	65	50	10	21
(480)	208	200	248	232
(4100)	152	145	134	128
(510)	0	7	79	50
(530)	233	246	284	309
(550)	162	166	148	120
(570)	197	195	253	245
(590)	8	2	54	40
(620)	86	91	31	15
(640)	136	127	225	207
(660)	150	134	222	202
(680)	98	92	34	40
(710)	37	43	33	25
(730)	164	189	224	211
(750)	145	168	162	157
(770)	127	142	152	163
(820)	168	183	212	237
(840)	0	5	52	39
(910)	94	104	149	162
(930)	62	79		
(200)	248	235	213	168

Tabelle 2. Auswertung der Weissenbergaufnahmen von ThMoB₄ und ThWB₄; CuK α -Strahlung

Tabelle	2 (Fortsetzung)
---------	-----	--------------

(7,7,7)	${ m Th}{ m N}$	loB4	ThWB_4	
(10Kl)	Fbeob.	$\mid F_{ t ber.} \mid$	$ F_{beob.} $	Fber.
(400)	242	237	235	205
(600)	254	307	329	389
(800)	124	148	95	109
(201)	244	239	248	179
(401)	202	207	218	174
(601)	224	299	363	383
(801)	104	133	80	90
(111)	54	37	39	16
(131)	293	315	364	363
(151)	218	199	178	157
(171)	257	215	305	261
(191)		4	50	27
(11111)	64	48	23	23
(221)	270^{-1}	309	374	372
(241)	-10 16	6	79	50
(261)	80	52	0	4
(281)	250	224	288	267
(201)	157	139	118	109
(311)	214	213	328	318
(331)	106	104	28	10
(351)	293	330	399	423
(371)	111	82	16	10
(301)	165	107	205	175
(3111)	145	126	188	187
(1911)	229	234	285	272
(421)	53	201	_ 00 16	
(441)	64	50	28	23
(401)	220	191	224	220
(401)	151	147	123	135
(4101)	16	31	37	25
(531)	228	246	314	301
(551)	168	164	115	118
(551)	100	179	238	232
(501)	110	1,0	-56	37
(621)	82	93	16	22
(641)	131	126	226	198
(661)	148	141	$\overline{217}$	211
(681)	94	93	32	39
(711)	23	38	21	22
(731)	160	178	200	202
(751)	147	155	114	145
(771)	140	146	170	169
(821)	168	183	217	236
(841)	100	7	53	34
(911)	104	105	149	161
(031)	69	89		

Tabelle 2 (Fortsetzung)

<i>hkl</i>)	$\mathbf{Th}\mathbf{N}$	IoB_4	ThV	VB_4
	Fbeob.	F _{ber.}	F _{beob} .	F _{ber.}
021)	122	115	27	6
041)	236	198	310	303
061)	252	179	292	272
081)	143	110	57	36
0101)	251	246	309	320
202)	248	198	177	146
(402)	189	203	192	177
602)	223	269	295	343
802)	128	136	96	102
112)	44	31	33	13
132)	269	251	276	299
152)	227	196	178	161
(172)	231	190	255	228
192)	0	6	38	21
(1112)	42	46	00	
(222)	257	250	329	305
242)	16	13	46	32
262)	31	99	50	15
282)	212	200	263	947
2102)	138	142	118	117
(312)	191	171	979	261
332)	136	110	210	201 97
352)	280	201	260	202
(372)	100	77	37	11
(302)	129	26	179	159
(199)	104	999	174	152
(449)	210 15	19	202	200
(169)	13	12	34 10	10
402)	40	40	200	20
(402)	197	100	440 EQ	209
(522)	102	11	00 970	00 971
(552) (559)	150	410	410	271
(552)	101	101	110	112
(502)	1//	174	220	220
(094) (899)	0 73	0 9 /	10	90
022)	105	80 111	108	190
(044)	120	111	190	182
(002) (200)	119	120		
(719)	00	0/ 20	9.1	o.∡
(114) (799)	33 140	39 170	10 190	24 101
(104) (759)	140	170	189	191
(194) (∩99)	141	104	132	145
(042)	108	99 157	32	2
(069)	175	100	269	247
(082)	214	177	264	258
004)	115	97	43	31

tisch die Radiensumme der beteiligten Atome dar; dagegen sind die Mo-Mo-Abstände mit 2,58 Å merklich kleiner als 2 $R_{Mo} = 2,78$ Å. Die Auswertung einer Pulveraufnahme von ThMoB₄ (Tab. 4) läßt sich wieder lückenlos mit orthorhombischer Symmetrie durchführen. Die Berechnung der Intensitäten steht im Einklang mit der Beobachtung.

Das Komplexborid ThWB₄

Wie vorher konnte auch aus einem Regulus mit Ansatz Th(20)W(15)B(65) ein nadelförmiges Kristallfragment erhalten werden. Damit wurden Drehkristall- und *Weissenberg*aufnahmen um die

	Th 4i)	Mo 4g)	B 4h)	B 4j)	B 8q)
Th 4i)	3,77 3,82 3,87	$3,12 \\ 3,18$	2,83	2,76	2,77 2,87
Mo 4g)	$3,12 \\ 3,18$	2,58	2,46	2,45	2,45
B 4h)	2,83	2,46	1,82		1,84
B 4j)	2,76	2,45	_ ,	1,82	1,84
B 8q)	2,77 2,87	$2,\!45$	1,84	1,84	1,84

Tabelle 3. Interatomare Abstände in ThMoB₄ (bis 3,5 Å)

Nadelachse durchgeführt. Eine erste Umzeichnung sämtlicher Reflexe der Weissenbergaufnahme führt auf ein primitives, monoklines Gitter mit den Abmessungen a = 12,24 Å, b = 3,74 Å, c = 6,12 Å und $\beta = 104.5^{\circ}$. Dieses Ergebnis stimmt mit den Angaben für ThWB4 nach Pitman et al.¹ vollkommen überein (mögliche Raumgruppen: P 2, Pm, P 2/m). Eine Pattersonsynthese P(u, v) von ThWB₄ ergab jedoch dieselbe Anordnung der Metallatome wie jene für die ThMoB4-Struktur. Bei der nachfolgenden Verfeinerung in der Raumgruppe P 2 gelang es aber nicht, einen Wert von R = 35% zu unterschreiten. Bei dieser Verfeinerung erwiesen sich übrigens die Positionen der Metallatome als starr und die Parameter entsprechen weitgehend jenen von ThMoB₄. Nun machten sich in der Intensitätsberechnung zwei Systeme von Reflexen bemerkbar, die in Konkurrenz stehen, nämlich "Unterzellenreflexe" entsprechend ThMoB4 und "Überstrukturreflexe". Die beiden Reflexsysteme lassen sich gemeinsam nicht weiter verfeinern und legen daher eine Verzwillingung des untersuchten Kristalls nahe. Tatsächlich läßt die genaue Analyse der Weissen-

(hkl)	$\sin^2 \theta \cdot 10^3$ gem.	$\sin^2 \theta \cdot 10^3$ ber.	I, gesch.	I, ber.
(110)		16,9	· · · · · · · · · · · · · · · · · · ·	3
(020)	25,6	25,5	SSS	11
(001)]	41.0	41,8 ₎	aak	(100
(200)	41,9	(42,5)	581	31
$(111)^{'}$		58,8		2
(021)		(67, 3)		$(^{10}$
(130)	68,1	${68,0}$	\mathbf{sst}	$\left\{ 66 \right\}$
(220)		(68,0		64
(201)	83,7	84,3	s	31
(040)	102.0	∫101,9	g	ſ 8
(310)	102,0	101,9	5	19
(131)	110.0	<i>∫</i> 109,8	sst	<i>∫</i> 77
(221)	110,0	109,8	555	\ 76
(041)	143.7	$\int 143,7$	s^+	$\int \frac{11}{2\pi}$
(311)]	140,1	(143,7)	~	27
(240)		144,4		0
(330)	152,5	152,9	sss	4
(002)	168,0	167,2	ss^+	21
(100)[170,6	169,9	ss^+	$\begin{cases} 13 \\ -7 \end{cases}$
(400)J	,	[169,9		U V
(112) (941)		184,2		0
(2 ± 1) (022)		100,2		0
(022)		192,0		2
(331)	194,8	194,7	ss^+	
(420))		(200.6		(14
(151)	212.5	203,0 211 7	s	14
(401)	212,0	211,7	6	
(060)	230.0	229.4	555	4
(132)	200,0	(235.1		(21)
(222)	235.9	$\int_{235.1}^{-35.1}$	m-	\int_{20}^{-1}
(421)		237.2		18
(350)	254,7	254,8	ss^+	18
(042)	0 <i>0</i> 0 -	(269, 1)		(3
(312)	269,7	269,1	SS	18
(061)		(271,2		4
(260)	971 9	271,8	3 00	0
(440)	211,2	271,8	888	j0
(510)		(271, 8)		(0
$(351)^{-1}$	297,4	296,6	s	27
(242)		311,6		0
(261)		313,6		1
(441)		313,6		0
(511)		313,6		0
(332)		320,1		3
(170)	322,4	322,8	88	<u>{5</u>
(030)]		[322,8		[7

Tabelle 4. Auswertung einer Pulveraufnahme von Th MoB_4 ; CuK α -Strahlung

(hkl)	$\sin^2 \theta \cdot 10^3$ gem.	$\sin^2 \theta \cdot 10^3$ ber.	I, gesch.	<i>I</i> , ber.
(152)	338 0	∫337,1	aa-	ſ8
(4 02)∫	330,0	337,1	66	<u></u> 14
(422)		$\int^{362,5}$		(¹⁰
(171)	364,7	${364,6}$	s	{ 9
(531)J		(364,6		(11
(003)	376, 3	376,1	SSS	4
(600)	383,0	382,3	SSS	4
(113)		393,1		0
(062)		396,5		3
(460)	·	399,3		0
(023)		401,6		1
(080)]		(407,8)		f ⁰
(370)	Basiling and	$\{407, 8$		$\left\{ 1 \right\}$
(620))	—	1407,8		(1
(203)	—	418,6		3
(352)	100.0	$\binom{422,0}{12}$		$\begin{bmatrix} 15 \\ 2 \end{bmatrix}$
(601)	422,8	$\{424, 1$	ss^+d	
(550))		(424,7		(2
(262)		439,0		0
(442)	_	439,0		0
(512)	_	439,0		0
(461)	_	441,0	<u> </u>	0
(133)	444,5	1444,1	SS	18
(223)]	,	(444,1		(8
(081)		449,0		
(371)	450,0	1449,0	SSS	
(021)		449,0		
(280)J (551)	166 9	166 5	999	(*
(042)	400,5	400,0	666	± (1
(040)	478,5	1478 1	SSS	
(840)		484.2		ره 1
(172)		(489.9		(5
(532)	489 7	490.0	ss+	$\left \frac{1}{7} \right $
(281)	100,1	492.0		7
(243)		520.5		ັ້0
(641)		526.0		2
(190)		526,7	<u> </u>	0
(710)		526,7	_	0
(333)		529,0	_	1
(153))		(546,0		(4
(403)	546, 6	${546,0}$	ss ⁻ d	${2}$
(602)		(549, 4)		(5
(462)		566, 4		0
(191)		568, 5		0
(711)		568, 5		0
(423)	572,0	571,5	SSS	5

Tabelle 4 (Fortsetzung)

Tabelle	4	(Fortsetzung)
---------	---	---------------

(hkl)	$\sin^2 \theta \cdot 10^3$ gem.	$\sin^2 \theta \cdot 10^3$ ber.	I, gesch.	I, ber.
(082)		574,9	999	\int_{1}^{1}
(622)	~ 515,2	574.9	868	$\begin{bmatrix} 1\\1 \end{bmatrix}$
(480)		(577.6		(3
(570)	577,7	${577,6}$	ss ⁻	${}_{3}$
(730))		577,6		(3
(552)	592, 6	591,9	SSS	3
(063)		605, 5		1
(390)	6114	∫611,6	888	$\int 1$
(660)∫	011, 1	<u></u> €11,6	61010	$\left\{ 1 \right\}$
(282)		(617,4		6 ~
(481)	618.9	J619,4	s	Įõ
(071)	,	619,4		
(101)] (252)	631 6	621.0	aa	မြို
(0100)	031,0	637 1	88	9 9
(263)		647.9		0
(443)		647.9	51-100 Bit 100	Ő
(513)		647.9		õ
(642)		651,4		2
(391))	629 9	(653,4		(2
(661)	052,8	$\left\{ 653,4 ight.$	SSS	3
(004)	669, 3	`668,6	SSS	`3
(0101)		(678, 9)		(5
(2100)	679 7	679,6	88	2
(750)	0,0,1	679,6	55	$)^2$
(800) J		(679,6		(1
(114)	**********	685,6		0
(192)		093,8		0
(712) (024)		604 1		0
(173)		(698.9		(5
(533) (699, 5	698.9	ss	16
(820)	$\sim 706,0$	705,1	SSS	3
(204)	$\sim 712,0$	711,1	SSS	2
(2101)		(721, 4)		(3
(751) }	720,8	${721,4}$	ss ⁻	${4}$
(801) J		(721, 4)		(1
(134)	735.7	∫736,6	88	∫5
(224)	100,1	736,6	66	15
(482)	244.0	$\binom{744,8}{744,8}$		6
(072)}	744,8	744,8	SS	$\begin{cases} 5\\5 \end{cases}$
(134)) (821)	746 4	(144,0 746 Q	99-	() B
(603)	759.0	758 4	80 80	0 5
(044)		(770.6	66	(1
(314)	771,0	770,6	SSS	2
,		~		· ·

(hkl)	$\sin^2 \theta \cdot 10^3$ gem.	$\sin^2 \theta \cdot 10^3$ ber.	I, gesch.	I, ber.
(463)		775.4		0
(392)		1778.8		(2
(662)	778,5	778.8	SSS	13
(1110)		781.5		0
(590)		781,5	Among and	0
(840)		781,5		0
(083)		(783,9		(1
(373)	784.5	783.9	SSS	$\langle 1$
(623)		783,9		1
(680)		790,0		1
(553)	800,5	800,9	SSS	4
(0102)	805,2	804,3	SSS	5
(4100)		807,0		2
(244)		813,1		0
(334)		821, 6		2
(1111)		823,3		0
(591)		823,3		0
(841)		823, 3		0
(283)	827,0	826,3	sss^+	7
(681)]	020 4	(831,8	999	ſ2
(770)}	852,4) 832,5	666	12
(154)	890 D	838,5	80-	Ĵ5
(404)∫	039,0	\838,5	66	ે3
$(2102)_{1}$		846,7		$(^5$
(752)	847,1	846,7	ss	$\left\{ 6 \right\}$
(802)		[846, 8]		[2
(4101)	849,5	848,8	SSS	5
(643)	<u> </u>	860,3	<u> </u>	2
(424)	845,0	864,0	888	6
(3110)		866,5		2
(910)		866,5		1
(822)	873.3	<i>∫</i> 872,2	ss	17
(771)∫	010,0	1874,3		၂၀
(064)		898,0		
(193)		902,8		0
(713)		902,8		U (5
(3111)	000 6	908,3	aa_	
(911)	908,0	2908,0	88)Ť
(800))	*	(909,0		
(0120)	<u> </u>	1017 /		$\begin{cases} 0\\1 \end{cases}$
(930) J (254)	0.9.2. 9	(817,4 923 5	ss+	16
(594)	040,4	040,0	614	10

Tabelle 4 (Fortsetzung)

bergaufnahmen eine etwas verschiedene Reflexform in den beiden Systemen erkennen. In vereinzelten Fällen ergeben sich zudem stark verschiedene Intensitäten zugeordneter Reflexe derselben Zone in verschiedenen Quadranten der Aufnahme. Dieser Umstand läßt sich durch den Einfluß der Absorption nicht ohne weiteres verstehen. Eine Untersuchung der in zwei Systeme aufgespaltenen reziproken Gitterpunkte zeigt, daß der weitaus größte Teil der "Überstrukturreflexe" durch einfache Drehung des Grundgitters (Unterzellenreflexe entsprechend ThMoB₄) um 180 — $\beta^* = 104.5^\circ$ entstanden sein kann. Die Überstrukturreflexe entsprechen dann in ihrer Intensitätsabfolge

Abb. 1. Geometrische Beziehung zwischen monokliner und orthorhombischer Elementarzelle von $ThWB_4$

den Unterzellenreflexen und führen gemäß ihrer Lage quasi zu einer Verdopplung der Zelle in der monoklinen Aufstellung. Diese Beobachtung (Verzwillingung mit [001]-Achse) wird schließlich durch die Pulveraufnahmen von ThWB₄ gestützt, auf denen keine Überstrukturlinien aufscheinen. Mit den Unterzellenreflexen allein entspricht das Gitter von ThWB₄ wieder jenem von ThMoB₄ und die Verfeinerung der ThWB₄-Struktur läßt sich analog zu ThMoB₄ bis zu einem *R*-Wert von 12% (Tab. 2) durchführen. Auch für ThWB₄ ergibt sich sowohl in der Verfeinerung als auch aus den Pulveraufnahmen kein Hinweis für ein Abweichen von der orthorhombischen Symmetrie Cmmm. Demnach ist ThWB₄ mit ThMoB₄ isotyp.

Man muß daher annehmen, daß im Falle der Untersuchung von Pitman et al.¹ ein ähnliches, kristallisiertes Objekt vorlag wie hier. Auch ist es möglich, daß zwei strukturell eng verwandte Modifikationen bestehen, z. B. Hoch- und Tieftemperaturform. Es sei noch bemerkt, daß die röntgenographischen Daten nach *Pitman* et al.¹ ohne Schwierigkeit mit der Annahme der orthorhombischen Zelle wiedergegeben werden können.

Abb. 1 zeigt die Beziehung zwischen orthorhombischer und monokliner Aufstellung der Elementarzelle von ThWB₄. Die Atomparameter, Fehler und Temperaturkoeffizienten entsprechen mit $y_{\rm Th} = 0,3020$ sowie $x_{\rm W} = 0,1717$ jenen im ThMoB₄, demnach auch die Borparameter und die interatomaren Abstände — auch hier sind die W—W-Kontakte mit 2,59 Å relativ kurz (siehe Tab. 1 und 3). Schließlich ist in Tab. 5 die Auswertung und Intensitätsberechnung einer Diffraktometeraufnahme von ThWB₄ enthalten.

Das Röntgenogramm von Th ReB_4 läßt sich ebenfalls mit einer orthorhombischen Zelle lückenlos indizieren. Auf eine Wiedergabe der Daten wird wegen vollkommener Analogie zu Th WB_4 verzichtet.

Ebenso ist die Isotypie der Phase $ThVB_4$ mit $ThMoB_4$ gesichert, obgleich keine röntgenographisch einphasige Probe hergestellt wurde. Bei Ansätzen von Th(17-20)V(15-16)B(64-68) tritt als Hauptmenge stets $ThVB_4$ in Erscheinung, doch wird die Phase in wechselnder Menge von ThB_4 und ThO_2 begleitet.

Tab. 6 gibt eine Zusammenstellung der Gitterparameter der Komplexboride mit ThMoB₄-Typ. Die röntgenographische Auswertung läßt in keinem Fall einen nennenswerten homogenen Bereich erkennen; die Zusammensetzung dürfte nur wenig von der vorgeschlagenen abweichen. Es sei noch bemerkt, daß die Mo-haltige Verbindung, wie in manch anderen Fällen beobachtet, etwas größer ist als die analoge W-haltige Verbindung.

Diskussion

Abb. 2 zeigt eine Projektion der Kristallstruktur von ThMoB₄ entlang der [001]-Achse auf die *ab*-Fläche und vergleichsweise analoge Projektionen der Strukturen von YCrB₄² einerseits und Y₂ReB₆³ andrerseits. Die enge Verwandtschaft dieser drei Typen ist auffallend. Sie stellen Schichtgitter mit ebenen Bornetzen dar, bestehend aus 5er-, 6er- bzw. 7er-Ringen. Während in ThMoB₄ jeweils zwei zu einem Paar zusammengefaßte 5er-Ringe parallel zur *a*-Achse liegen, sind in YCrB₄ diese Paare abwechselnd um 90° gedreht. Auf die enge Beziehung des YCrB₄-Typs zum Strukturtyp von Sc \square B₂C₂*, ⁴ wurde bereits von *Kuz'ma*² aufmerksam gemacht, ebenso auf die Beziehung zur Struktur von Y₂ReB₆³.

^{*} \square = Lückenposition oberhalb und unterhalb der 5er-Ringe.

Ternäre Komplexboride mit ThMoB₄-Typ

(hkl)	$\sin^2 \theta \cdot 10^3$ gem.	$\sin^2 \theta \cdot 10^3$ ber.	I, gesch.	I, ber.	$\sin^2 \theta \cdot 10^3$ <i>Pitman</i> et al. ¹
(110)		16.9		1	16.9
(020)		25.3		ō	
(200)	10.0	(42,3		(10	1.00
(001)	42,8	42,5	st	100	42,2
(111)		`59,3		0	·
(130))	67.0	(67,6	ach	(57) en e
(220)∫	07,9	[67,6	SSU	(58	}07,0
$(021)^{-1}$		67,7		0	
(201)	85,2	84,8	ss	11	84,3
(040)	101.8	∫101,3	m	(12	1010
(310)∫	101,0	\101,6	111	27	}101,0
(131)	110.5	∫110,0	eet.	<u> 65</u>	100.8
(221)	110,0	110,1	000	{67	\$109,0
(240)		143,6		ſ)
(041)	144,2	$\{143,7$	m	$\{ 16 \\ 16 \\ 16 \\ 16 \\ 16 \\ 16 \\ 16 \\ 16 $	${143,4}$
(311))		(144,0		(36)
(330)		152,2		0	
(150)	100.0	$\binom{168,8}{160,2}$		$\begin{bmatrix} 5\\ 0 \end{bmatrix}$	167.9
(400)	169,8	{169,3	s	$\begin{cases} 3 \\ 10 \end{cases}$	100,0
(002)		(109,8		(19	169,2
(241)		180,1		1	
(112) (221)		180,7		0	
(331) (490)	104.9	194,0		11	102.0
(420) (022)	194,5	194,1	88	11	193,0
(022)	211 1	911 2	800	5	200.0
(401)	211,1	(911.8	669	3 (3	209,9
(202)	212,3	211,0	SSS		211,2
(060)	228.6	227.9	855	5	228 5
(421)	2=0,0	(237.1)	666	.15)
(132)	237.5	237.4	m	18	235,8
(222)	,	237.4		18	237.0
(350)	253,9	253,5	s^{-}	18	252.9
(260))		(270,2		(0)
(061)	270,8	270,3	sss^+	$\left\{ 6 \right\}$	269.8
(440)		270,6		0	
(510)ן		(270,9		(0)	Ì
(042)	271,5	271,1	ss	$\begin{cases} 5 \end{cases}$	271,0
(312))		271,3		111)
(351)	296,0	295,9	s	27	293,5
(261)		312,7		0	
(441)		313,1	-	0	
(511)		313,4		0	
(242)		313,4		0	keine
(170)	320,6	320,8	SSS	4	weiteren
(530)	322,0	321,6	sss^+	6	Werte

Tabelle 5. Auswertung einer Diffraktometeraufnahme von ThWB₄, CuK α_1 -Strahlung

(hkl)	$\sin^2 \theta \cdot 10^3$ gem.	$\sin^2 \theta \cdot 10^3$ ber.	I, gesch.	I, ber.	$\sin^2 \theta \cdot 10^3$ Pitman et al. ¹
(332)		322,0		0	keine
(152) (402)	339,0	(338, 6) (339, 1)	SSS	$\begin{cases} 3\\ 2 \end{cases}$	weiteren Werte
(171)	363,1	363,2	ss-	8	
(531) (422)	364,1	${364,0 \atop 364,4}$	ss+	${10 \\ 8}$	
(600) (003)	381,5	381,0 382,0	sssd	${}^{4}_{4}$	
(460)		397,2		0	
(062)	397,8	397,6	SSS	4	
(113)		398,9		0	
(080)	<u> </u>	405,1		0	
(370)		405, 4		0	
(620)		406,3		0	
(023)		407,3		0	
(550) (352) (601)	423,0	$\{ \begin{matrix} 422,9 \\ 423,3 \\ 423,5 \end{matrix} \}$	ss+	$ \begin{bmatrix} 1\\15\\7 \end{bmatrix} $	
(203)		424,3		1	

Tabelle 5 (Fortsetzung)

Tabelle 6. Gitterparameter und Volumen der Komplexboride mit ThMoB₄-Typ

Phase	a, Å	$b, \mathrm{\AA}$	c, Å	c/a	V, Å3			
ThVB ₄	7,453	9,623	$3,68_{2}$	0,494	264,1			
$ThMoB_4$	$7, 48_{1}$	$9,65_{8}$	$3,77_{1}$	$0,50_{4}$	272,5			
$ThWB_4$	$7,48_{7}$	$9,68_{1}$	$3,73_{9}$	$0,50_{0}$	271,0			
$\mathrm{ThR}_{\Theta}\mathrm{B}_{4}$	$7,43_{6}$	9,606	$3,71_{5}$	$0,50_{0}$	265,4			

Die Kombination zweier Metallsorten mit stark unterschiedlichem Radienverhältnis erzwingt offenbar die teilweise oder vollständige Auflösung der hexagonalen Symmetrie (6er-Ringe von Boratomen im Grundtypus von AlB₂) in 5er-Ringe (kleines Metallatom) und 7er-Ringe (großes Metallatom). In einer Arbeit über ternäre Komplexboride⁵ wurde eine Einteilung der Boride nach der Bor—Bor-Aggregation versucht. Danach ist der ThMoB₄-Typ zusammen mit dem YCrB₄-, Y₂ReB₆- und AlB₂-Typ in die Gruppe der Schichtstrukturen mit ebenen Bornetzen einzuordnen. Dieser Gruppe sind mit dem ScB₂C₂⁴-, YB₂C₂- und YB₂C⁶-Typ eine Reihe von Carboboriden angeschlossen.

Abb. 2. Projektion der Kristallstruktur von ThMoB₄ entlang der Achse [001] auf die *ab*-Fläche. Im Vergleich dazu sind auch die Projektionen der verwandten Kristallstrukturen von YCrB₄ und Y₂ReB₆ dargestellt

1098 P. Rogl u. a.: Ternäre Komplexboride mit ThMoB₄-Typ

In enger Beziehung dazu stehen die Strukturtypen von ReB₂, RuB₂, Mo₂B₅ und W₂B₅ sowie auch das kürzlich beschriebene CeCr₂B₆⁷ mit gewellten Bornetzen.

Sämtliche Strukturrechnungen wurden auf der Rechenanlage IBM 7040 am Institut für Numerische Mathematik der Technischen Hochschule Wien durchgeführt, wofür Herrn Prof. Dr. *H. Stetter* bestens gedankt sei.

Literatur

- ¹ D. T. Pitman und D. K. Das, J. Electrochem. Soc. 107, 763 (1960).
- ² Yu. B. Kuz'ma, Sov. Phys. Crystallogr. 15, 312 (1970).
- ³ Yu. B. Kuz'ma und S. I. Svarichevskaya, Sov. Phys. Crystallogr. 17, 569 (1972).
- ⁴ G. S. Smith, Q. Johnson und P. C. Nordine, Acta Cryst. 19, 668 (1965).
- ⁵ H. Nowotny und P. Rogl, Ternary metal borides, im Druck.
- ⁶ J. Bauer und H. Nowotny, Mh. Chem. 102, 1129 (1971).
- ⁷ Yu. B. Kuz'ma und S. I. Svarichevskaya, Sov. Phys. Crystallogr. 17, 830 (1973).

Prof. Dr. H. Nowotny Institut für Physikalische Chemie Universität Wien Währinger Straβe 42 A-1090 Wien Österreich